• 为了保证你在浏览本网站时有着更好的体验,建议使用类似Chrome、Firefox之类的浏览器~~
    • 如果你喜欢本站的内容何不Ctrl+D收藏一下呢,与大家一起分享各种编程知识~
    • 本网站研究机器学习、计算机视觉、模式识别~当然不局限于此,生命在于折腾,何不年轻时多折腾一下

Numpy数组拼接

Python admin 3年前 (2017-01-10) 1904次浏览 0个评论 扫描二维码

数组拼接方法一

思路:首先将数组转成列表,然后利用列表的拼接函数 append()、extend()等进行拼接处理,最后将列表转成数组。

示例 1:

>>> import numpy as np
>>> a=np.array([1,2,5])
>>> b=np.array([10,12,15])
>>> a_list=list(a)
>>> b_list=list(b)

>>> a_list.extend(b_list)

>>> a_list
[1, 2, 5, 10, 12, 15]
>>> a=np.array(a_list)
>>> a
array([ 1,  2,  5, 10, 12, 15])

该方法只适用于简单的一维数组拼接,由于转换过程很耗时间,对于大量数据的拼接一般不建议使用。

 

数组拼接方法二

思路:numpy 提供了 numpy.append(arr, values, axis=None)函数。对于参数规定,要么一个数组和一个数值;要么两个数组,不能三个及以上数组直接 append 拼接。append 函数返回的始终是一个一维数组。

示例 2:

>>> a=np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> np.append(a,10)
array([ 0,  1,  2,  3,  4, 10])
>>> a
array([0, 1, 2, 3, 4])

 

>>> b=np.array([11,22,33])
>>> b
array([11, 22, 33])
>>> np.append(a,b)
array([ 0,  1,  2,  3,  4, 11, 22, 33])

 

>>> a
array([[1, 2, 3],
[4, 5, 6]])
>>> b=np.array([[7,8,9],[10,11,12]])
>>> b
array([[ 7,  8,  9],
[10, 11, 12]])
>>> np.append(a,b)
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12])

numpy 的数组没有动态改变大小的功能,numpy.append()函数每次都会重新分配整个数组,并把原来的数组复制到新数组中。

 

数组拼接方法三

思路:numpy 提供了 numpy.concatenate((a1,a2,…), axis=0)函数。能够一次完成多个数组的拼接。其中 a1,a2,…是数组类型的参数

示例 3:

>>> a=np.array([1,2,3])
>>> b=np.array([11,22,33])
>>> c=np.array([44,55,66])
>>> np.concatenate((a,b,c),axis=0)  # 默认情况下,axis=0 可以不写
array([ 1,  2,  3, 11, 22, 33, 44, 55, 66]) #对于一维数组拼接,axis 的值不影响最后的结果

 

>>> a=np.array([[1,2,3],[4,5,6]])
>>> b=np.array([[11,21,31],[7,8,9]])
>>> np.concatenate((a,b),axis=0)
array([[ 1,  2,  3],
[ 4,  5,  6],
[11, 21, 31],
[ 7,  8,  9]])

>>> np.concatenate((a,b),axis=1)  #axis=1 表示对应行的数组进行拼接
array([[ 1,  2,  3, 11, 21, 31],
[ 4,  5,  6,  7,  8,  9]])

 

对 numpy.append()和 numpy.concatenate()两个函数的运行时间进行比较

示例 4:

>>> from time import clock as now
>>> a=np.arange(9999)
>>> b=np.arange(9999)
>>> time1=now()
>>> c=np.append(a,b)
>>> time2=now()
>>> print time2-time1
28.2316728446
>>> a=np.arange(9999)
>>> b=np.arange(9999)
>>> time1=now()
>>> c=np.concatenate((a,b),axis=0)
>>> time2=now()
>>> print time2-time1
20.3934997107

可知,concatenate()效率更高,适合大规模的数据拼接


Deeplearn, 版权所有丨如未注明 , 均为原创丨本网站采用BY-NC-SA协议进行授权 , 转载请注明Numpy 数组拼接
喜欢 (0)
admin
关于作者:
互联网行业码农一枚/业余铲屎官/数码影音爱好者/二次元

您必须 登录 才能发表评论!