• 为了保证你在浏览本网站时有着更好的体验,建议使用类似Chrome、Firefox之类的浏览器~~
    • 如果你喜欢本站的内容何不Ctrl+D收藏一下呢,与大家一起分享各种编程知识~
    • 本网站研究机器学习、计算机视觉、模式识别~当然不局限于此,生命在于折腾,何不年轻时多折腾一下

2019年07月7日的内容

GRU原理白话解析

GRU原理白话解析

接上一篇描述 RNN 网络说道 gradient vanish 的问题,要解决这个问题,那么 gru/lstm 是解决其问题的,说的抽象一点是解决这个问题,实在一点就是要解决记忆问题。基本原理假设给你一个很长很长的文章,一开始你读了很多行还记得前面写了啥,大概描述内容都记得,但是越往后面渐渐的你发现之前的内容是啥记得不太清了,gru 就可以帮助你一直记住……

MTL有效性

MTL有效性

我们假设我们有两个相关的任务 A 和 B,依赖一个共享的隐藏层表示 F。1、Implicit data augmentationMTL 可以有效增加用于模型训练的样本量。由于所有任务难免会有一些噪声,当我们在任务 A 上训练模型, 我们的目标是学习针对任务 A 的一个好的表示,可以完全避免依赖数据的噪音,而且泛化效果好。由于不同的任务有不同的噪声模式,一……