• 为了保证你在浏览本网站时有着更好的体验,建议使用类似Chrome、Firefox之类的浏览器~~
    • 如果你喜欢本站的内容何不Ctrl+D收藏一下呢,与大家一起分享各种编程知识~
    • 本网站研究机器学习、计算机视觉、模式识别~当然不局限于此,生命在于折腾,何不年轻时多折腾一下

机器学习导论(附录)–梯度下降–随机梯度下降

ml admin 3年前 (2016-11-27) 1511次浏览 0个评论 扫描二维码

在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。

下面我们以线性回归算法来对三种梯度下降法进行比较。

一般线性回归函数的假设函数为:

            h(θ)=∑θjxj     j=0:N

对应的能量函数(损失函数)形式为:

           J(θ)=1/(2m)(hθ(x(i))y(i))2   i=1:m

下图为一个二维参数(θ0θ1)组对应能量函数的可视化图:

1. 批量梯度下降法 BGD

批量梯度下降法(Batch Gradient Descent,简称 BGD)是梯度下降法最原始的形式,它的具体思路是在更新每一参数时都使用所有的样本来进行更新,其数学形式如下:

(1) 对上述的能量函数求偏导:

(2) 由于是最小化风险函数,所以按照每个参数θθ的梯度负方向来更新每个θθ

具体的伪代码形式为:

repeat{

(for every j=0, … , n)

}

从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数据,如果样本数目mm很大,那么可想而知这种方法的迭代速度!所以,这就引入了另外一种方法,随机梯度下降。

优点:全局最优解;易于并行实现;

缺点:当样本数目很多时,训练过程会很慢。

从迭代的次数上来看,BGD 迭代的次数相对较少。其迭代的收敛曲线示意图可以表示如下:

2. 随机梯度下降法 SGD

由于批量梯度下降法在更新每一个参数时,都需要所有的训练样本,所以训练过程会随着样本数量的加大而变得异常的缓慢。随机梯度下降法(Stochastic Gradient Descent,简称 SGD)正是为了解决批量梯度下降法这一弊端而提出的。

将上面的能量函数写为如下形式:

利用每个样本的损失函数对θθ求偏导得到对应的梯度,来更新θθ

具体的伪代码形式为:

1. Randomly shuffle dataset;

2. repeat{

for i=1, … , mm{

(for j=0, … , nn)

}

}

随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将 theta 迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代 10 次的话就需要遍历训练样本 10 次。但是,SGD 伴随的一个问题是噪音较 BGD 要多,使得 SGD 并不是每次迭代都向着整体最优化方向。

优点:训练速度快;

缺点:准确度下降,并不是全局最优;不易于并行实现。

从迭代的次数上来看,SGD 迭代的次数较多,在解空间的搜索过程看起来很盲目。其迭代的收敛曲线示意图可以表示如下:

3. 小批量梯度下降法 MBGD

有上述的两种梯度下降法可以看出,其各自均有优缺点,那么能不能在两种方法的性能之间取得一个折衷呢?即,算法的训练过程比较快,而且也要保证最终参数训练的准确率,而这正是小批量梯度下降法(Mini-batch Gradient Descent,简称 MBGD)的初衷。

MBGD 在每次更新参数时使用 b 个样本(b 一般为 10),其具体的伪代码形式为:

Say b=10, m=1000.

Repeat{

for i=1, 11, 21, 31, … , 991{

(for every j=0, … , nn)

}

}

4. 总结

Batch gradient descent: Use all examples in each iteration;

Stochastic gradient descent: Use 1 example in each iteration;

Mini-batch gradient descent: Use b examples in each iteration.


Deeplearn, 版权所有丨如未注明 , 均为原创丨本网站采用BY-NC-SA协议进行授权 , 转载请注明机器学习导论(附录)–梯度下降–随机梯度下降
喜欢 (0)
admin
关于作者:
互联网行业码农一枚/业余铲屎官/数码影音爱好者/二次元

您必须 登录 才能发表评论!