ESCM分析Part1–框架

5,356次阅读
没有评论

最近一周有个课程培训需要选一个课题进行ppt汇报,排序这块选了多目标任务,想起之前做esmm这块有点经验,然后去了解下现在多目标任务有哪些前沿的发展。到此,就是这篇文章的产生的原因了。

ESCM2 : Entire Space Counterfactual Multi-Task Model for Post-Click Conversion Rate Estimation

这篇文章又是出自阿里,阿里的文章反正有的时候是一言难尽。不过没关系,也不妨碍我们去研究一下。

对于博主而言,这篇文章比较吸引我的地方是它给出了esmm中cvr预估大于ground truth 这个结论的验证,着实解决了我一个大问题。想想自己之前在做esmm的时候就遇到这样的问题,之前也做了一些方案比如isotonic regression方案。

但是如果本文能够从真正意义上解决这个问题那是最好不过了,这篇文章研究之后说是要实现cvr预估的unbias,但是感觉很难。看了一些其他大佬的分析,感觉只能做到debias。

这篇论文创作的动机就是针对esmm的两个大问题,然后针对性的解决

1、ieb (预估偏差)问题,esmm中cvr预估大于ground truth

2、pip(独立先验假设) 问题,转化是要依赖于点击的,在esmm中迂回建模cvr ,线上serving 的时候直接 cvr 塔出结果违背了这个规则

本文核心的观点:

1、重新回归cvr 本源,基于点击空间来优化cvr预估

2、采用因果推断的思想来提出unbias的方法:ips 和 dr 方法

关于escm的介绍我打算分三步来讲吧,今天这个讲个大的框架,后面三个部分是

1、论证 esmm中cvr预估大于ground truth

2、IPS 方案解决 ieb 和 pip 的论证

3、DR 方法的介绍

 
admin
版权声明:本站原创文章,由 admin 2022-12-02发表,共计726字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
评论(没有评论)