注册 登录
    • 为了保证你在浏览本网站时有着更好的体验,建议使用类似Chrome、Firefox之类的浏览器~~
    • 如果你喜欢本站的内容何不Ctrl+D收藏一下呢,与大家一起分享各种编程知识~
    • 本网站研究机器学习、计算机视觉、模式识别~当然不局限于此,生命在于折腾,何不年轻时多折腾一下

特征选择(2)-相关系数法

bigdata admin 81次浏览 0个评论 扫描二维码

上一篇文章讲到使用方差选择特征,这篇文章主要是使用pearson系数进行特征选择

使用相关系数法,先要计算各个特征对目标值的相关系数以及相关系数的P值

相关系数的计算公式如下:

$$s=\frac{\sum_{i=0}^{n}(x_i-\overline{x})*(y_i-\overline{y})}{\sqrt{\sum_{i=0}^{n}(x_i-\overline{x})^2*\sum_{i=0}^{n}(y_i-\overline{y})^2}}$$

sklearn函数

 

from sklearn.feature_selection import SelectKBest
from scipy.stats import pearsonr
from numpy import vstack, array, nan
SelectKBest(lambda X, Y: tuple(map(tuple,array(list(map(lambda x:pearsonr(x, Y), X.T))).T)), k=2).fit_transform(irisdata.data, irisdata.target)
部分实验结果如下
array([[ 1.4,  0.2],
       [ 1.4,  0.2],
       [ 1.3,  0.2],
       [ 1.5,  0.2],
       [ 1.4,  0.2],
       [ 1.7,  0.4],
       [ 1.4,  0.3],
       [ 1.5,  0.2],

Deeplearn, 版权所有丨如未注明 , 均为原创丨本网站采用BY-NC-SA协议进行授权 , 转载请注明特征选择(2)-相关系数法
喜欢 (0)
[xiaocui]
分享 (0)

您必须 登录 才能发表评论!